5,254 research outputs found

    Late-onset X-linked adrenal hypoplasia (DAX-1, NR0B1): two new adult-onset cases from a single center

    Get PDF
    PURPOSE: DAX-1 (NR0B1) is an orphan nuclear receptor, which plays a critical role in development and regulation of the adrenal gland and hypothalamo-pituitary-gonadal axis. Mutations in NR0B1 lead to adrenal hypoplasia congenita (AHC), hypogonadotropic hypogonadism (HH) and azoospermia in men. Presentation is typically with adrenal insufficiency (AI) during infancy or childhood. To date only eight cases/kindreds are reported to have presented in adulthood. METHODS: We describe two new cases of men with DAX-1 mutations who presented in adulthood and who were diagnosed at a large University Hospital. RESULTS: Case 1 presented with AI at 19 years. At 38 years he was diagnosed with HH. Detailed history revealed a brother diagnosed with AI at a similar age. Sequencing of the DAX-1 (NR0B1) gene revealed a heterozygous c.775T > C substitution in exon 1, which changes codon 259 from serine to proline (p.Ser259Pro). Case 2 was diagnosed with AI at 30 years. Aged 37 years he presented with HH and azoospermia. He was treated with gonadotropin therapy but remained azoospermic. Testicular biopsy showed maturational arrest and hypospermatogenesis. Analysis of the NR0B1 gene showed a heterozygous c.836C > T substitution in exon 1, resulting in a change of codon 279 from proline to leucine (p.Pro279Leu). This change alters the structure of the repression helix domain of DAX-1 and affects protein complex interactions with NR5A family members. CONCLUSIONS: We describe two missense mutations within the putative carboxyl-terminal ligand binding domain of DAX-1, presenting with AHC and HH in adulthood, from a single center. DAX-1 mutations may be more frequent in adults than previously recognized. We recommend testing for DAX-1 mutations in all adults with primary AI and HH or impaired fertility where the etiology is unclear

    Activation of Notch signalling by soluble Dll4 decreases vascular permeability via a cAMP/PKA-dependent pathway

    Get PDF
    Β© 2019 the American Physiological Society. The Notch ligand delta-like ligand 4 (Dll4), upregulated by VEGF, is a key regulator of vessel morphogenesis and function, controlling tip and stalk cell selection during sprouting angiogenesis. Inhibition of Dll4 results in hypersprouting, nonfunctional, poorly perfused vessels, suggesting a role for Dll4 in the formation of mature, reactive, functional vessels, with low permeability and able to restrict fluid and solute exchange. We tested the hypothesis that Dll4 controls transvascular fluid exchange. A recombinant protein expressing only the extracellular portion of Dll4 [soluble Dll4 (sDll4)] induced Notch signaling in endothelial cells (ECs), resulting in increased expression of vascular-endothelial cadherin, but not the tight junctional protein zonula occludens 1, at intercellular junctions. sDll4 decreased the permeability of FITC-labeled albumin across EC monolayers, and this effect was abrogated by coculture with the Ξ³-secretase inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester. One of the known molecular effectors responsible for strengthening EC-EC contacts is PKA, so we tested the effect of modulation of PKA on the sDll4-mediated reduction of permeability. Inhibition of PKA reversed the sDll4-mediated reduction in permeability and reduced expression of the Notch target gene Hey1. Knockdown of PKA reduced sDLL4-mediated vascular-endothelial cadherin junctional expression. sDll4 also caused a significant decrease in the hydraulic conductivity of rat mesenteric microvessels in vivo. This reduction was abolished upon coperfusion with the PKA inhibitor H89 dihydrochloride. These results indicate that Dll4 signaling through Notch activation acts through a cAMP/PKA pathway upon intercellular adherens junctions, but not tight junctions, to regulate endothelial barrier function. NEW & NOTEWORTHY Notch signaling reduces vascular permeability through stimulation of cAMP-dependent protein kinase A

    Fluctuating selection models and Mcdonald-Kreitman type analyses

    Get PDF
    It is likely that the strength of selection acting upon a mutation varies through time due to changes in the environment. However, most population genetic theory assumes that the strength of selection remains constant. Here we investigate the consequences of fluctuating selection pressures on the quantification of adaptive evolution using McDonald-Kreitman (MK) style approaches. In agreement with previous work, we show that fluctuating selection can generate evidence of adaptive evolution even when the expected strength of selection on a mutation is zero. However, we also find that the mutations, which contribute to both polymorphism and divergence tend, on average, to be positively selected during their lifetime, under fluctuating selection models. This is because mutations that fluctuate, by chance, to positive selected values, tend to reach higher frequencies in the population than those that fluctuate towards negative values. Hence the evidence of positive adaptive evolution detected under a fluctuating selection model by MK type approaches is genuine since fixed mutations tend to be advantageous on average during their lifetime. Never-the-less we show that methods tend to underestimate the rate of adaptive evolution when selection fluctuates

    A phylogenomic perspective on the robust capuchin monkey (Sapajus) radiation : first evidence for extensive population admixture across South America

    Get PDF
    Phylogenetic relationships amongst the robust capuchin monkeys (genus Sapajus) are poorly understood. Morphology-based taxonomies have recognized anywhere from one to twelve different species. The current IUCN (2017) classification lists eight robust capuchins: S. xanthosternos, S. nigritus, S. robustus, S. flavius, S. libidinosus, S. cay, S. apella and S. macrocephalus. Here, we assembled the first phylogenomic data set for Sapajus using ultra-conserved elements (UCEs) to reconstruct a capuchin phylogeny. All phylogenomic analyses strongly supported a deep divergence of Sapajus and Cebus clades within the capuchin monkeys, and provide support for Sapajus nigritus, S. robustus and S. xanthosternos as distinct species. However, the UCE phylogeny lumped the putative species S. cay, S. libidinosus, S. apella, S. macrocephalus, and S. flavius together as a single widespread lineage. A SNP phylogeny constructed from the UCE data was better resolved and recovered S. flavius and S. libidinosus as sister species; however, S. apella, S. macrocephalus, and S. cay individuals were interspersed in a widespread clade with no evidence for monophyly for any of these three morphospecies. STRUCTURE analysis of population clustering revealed widespread admixture among Sapajus populations within the Amazon and even into the Cerrado and Atlantic Forest. Difficulty in assigning species by morphology may be a result of widespread population admixture facilitated through frequent movement across major rivers and even ecosystems by robust capuchin monkeys

    Generating samples for association studies based on HapMap data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the completion of the HapMap project, a variety of computational algorithms and tools have been proposed for haplotype inference, tag SNP selection and genome-wide association studies. Simulated data are commonly used in evaluating these new developed approaches. In addition to simulations based on population models, empirical data generated by perturbing real data, has also been used because it may inherit specific properties from real data. However, there is no tool that is publicly available to generate large scale simulated variation data by taking into account knowledge from the HapMap project.</p> <p>Results</p> <p>A computer program (<it>gs</it>) was developed to quickly generate a large number of samples based on real data that are useful for a variety of purposes, including evaluating methods for haplotype inference, tag SNP selection and association studies. Two approaches have been implemented to generate dense SNP haplotype/genotype data that share similar local <it>linkage disequilibrium </it>(LD) patterns as those in human populations. The first approach takes haplotype pairs from samples as inputs, and the second approach takes patterns of haplotype block structures as inputs. Both quantitative and qualitative traits have been incorporated in the program. Phenotypes are generated based on a disease model, or based on the effect of a quantitative trait nucleotide, both of which can be specified by users. In addition to single-locus disease models, two-locus disease models have also been implemented that can incorporate any degree of epistasis. Users are allowed to specify all nine parameters in a 3 Γ— 3 penetrance table. For several commonly used two-locus disease models, the program can automatically calculate penetrances based on the population prevalence and marginal effects of a disease that users can conveniently specify.</p> <p>Conclusion</p> <p>The program <it>gs </it>can effectively generate large scale genetic and phenotypic variation data that can be used for evaluating new developed approaches. It is freely available from the authors' web site at <url>http://www.eecs.case.edu/~jxl175/gs.html</url>.</p

    Disease progression in Plasmodium knowlesi malaria is linked to variation in invasion gene family members.

    Get PDF
    Emerging pathogens undermine initiatives to control the global health impact of infectious diseases. Zoonotic malaria is no exception. Plasmodium knowlesi, a malaria parasite of Southeast Asian macaques, has entered the human population. P. knowlesi, like Plasmodium falciparum, can reach high parasitaemia in human infections, and the World Health Organization guidelines for severe malaria list hyperparasitaemia among the measures of severe malaria in both infections. Not all patients with P. knowlesi infections develop hyperparasitaemia, and it is important to determine why. Between isolate variability in erythrocyte invasion, efficiency seems key. Here we investigate the idea that particular alleles of two P. knowlesi erythrocyte invasion genes, P. knowlesi normocyte binding protein Pknbpxa and Pknbpxb, influence parasitaemia and human disease progression. Pknbpxa and Pknbpxb reference DNA sequences were generated from five geographically and temporally distinct P. knowlesi patient isolates. Polymorphic regions of each gene (approximately 800 bp) were identified by haplotyping 147 patient isolates at each locus. Parasitaemia in the study cohort was associated with markers of disease severity including liver and renal dysfunction, haemoglobin, platelets and lactate, (r = β‰₯ 0.34, p =β€Š <0.0001 for all). Seventy-five and 51 Pknbpxa and Pknbpxb haplotypes were resolved in 138 (94%) and 134 (92%) patient isolates respectively. The haplotypes formed twelve Pknbpxa and two Pknbpxb allelic groups. Patients infected with parasites with particular Pknbpxa and Pknbpxb alleles within the groups had significantly higher parasitaemia and other markers of disease severity. Our study strongly suggests that P. knowlesi invasion gene variants contribute to parasite virulence. We focused on two invasion genes, and we anticipate that additional virulent loci will be identified in pathogen genome-wide studies. The multiple sustained entries of this diverse pathogen into the human population must give cause for concern to malaria elimination strategists in the Southeast Asian region

    Tibial Loading Increases Osteogenic Gene Expression and Cortical Bone Volume in Mature and Middle-Aged Mice

    Get PDF
    There are conflicting data on whether age reduces the response of the skeleton to mechanical stimuli. We examined this question in female BALB/c mice of different ages, ranging from young to middle-aged (2, 4, 7, 12 months). We first assessed markers of bone turnover in control (non-loaded) mice. Serum osteocalcin and CTX declined significantly from 2 to 4 months (p<0.001). There were similar age-related declines in tibial mRNA expression of osteoblast- and osteoclast-related genes, most notably in late osteoblast/matrix genes. For example, Col1a1 expression declined 90% from 2 to 7 months (p<0.001). We then assessed tibial responses to mechanical loading using age-specific forces to produce similar peak strains (βˆ’1300 ¡Ρ endocortical; βˆ’2350 ¡Ρ periosteal). Axial tibial compression was applied to the right leg for 60 cycles/day on alternate days for 1 or 6 weeks. qPCR after 1 week revealed no effect of loading in young (2-month) mice, but significant increases in osteoblast/matrix genes in older mice. For example, in 12-month old mice Col1a1 was increased 6-fold in loaded tibias vs. controls (pβ€Š=β€Š0.001). In vivo microCT after 6 weeks revealed that loaded tibias in each age group had greater cortical bone volume (BV) than contralateral control tibias (p<0.05), due to relative periosteal expansion. The loading-induced increase in cortical BV was greatest in 4-month old mice (+13%; p<0.05 vs. other ages). In summary, non-loaded female BALB/c mice exhibit an age-related decline in measures related to bone formation. Yet when subjected to tibial compression, mice from 2–12 months have an increase in cortical bone volume. Older mice respond with an upregulation of osteoblast/matrix genes, which increase to levels comparable to young mice. We conclude that mechanical loading of the tibia is anabolic for cortical bone in young and middle-aged female BALB/c mice
    • …
    corecore